PLAY WITH MATH

TEST NO-06

TIME:-3Hrs.
F.M:-100

General instructions:-

1. All questions are compulsory.
2. This question paper contains 29 questions.
3. Questions 1-4 in section A are short-answer type questions carrying 1 mark each.
4. Questions $5-12$ in section B are short-answer type questions carrying 2 marks each.
5. Questions 13-23 in section C are long-answer type questions carrying 4 marks each.
6. Questions 24-29 in section D are long-answer type questions carrying 6 marks each.

Section-A

1 Find a vector in the direction of a vector $\vec{a}=\hat{\imath}-\hat{\jmath}+\mathrm{k}$, which has magnitude 8 units.
2. If A and B are matrices of order 3 and $|A|=5,|B|=3$, find $|3 A B|$.
3. If $x=a t^{2}$ and $y=2 a t$, find $\frac{d^{2} y}{d x^{2}}$.
4. Evaluate $\int \frac{\log x}{x^{2}} \mathrm{dx}$
Or,

Find the differential equation of the family of all straight lines passing through the origin.

Section-B

5. If A and B are square matrices of same order and B is skew - symmetric matrix , show that $\mathrm{A}^{\prime} \mathrm{BA}$ is a skew-symmetric matrix.
6. Find the point of the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of abscissa.
Or,

Show that the function $f(x)=\left\{\begin{aligned} x-1, & x<2 \\ 2 x-3, & x \geq 2\end{aligned}\right.$ is not differential at $\mathrm{x}=2$
7. Write the solution of the differential equation $\mathrm{x} \frac{d y}{d x}+2 \mathrm{y}=\mathrm{x}^{2}$.
8. find the local maxima and local minima of the function $f(x)=(\sin x-\cos x)$, where $0<x<2 \pi$.
9. If the point $(-1,-1,2),(2, m, 5)$ and $(3,11,6)$ are collinear ,then find the value of m.
10. One card is drawn at random from a pack of well-shuffled deck of cards.

Let E : the card drawn is spade, F : the card drawn is an ace .
Are the events E and F independent?
11. A company manufactures two type of sweaters type A and type B. it costs ₹ 360 to make a type A sweaters and ₹ 120 to make a type B sweaters. The company can make almost 300 sweaters and spend almost ₹ 72000 a day. The numbers of sweaters of type B cannot exceed the numbers of sweaters of type A by more than 100. The company make profit of ₹ 200 for each sweater type A and $₹ 120$ for every sweater of type B.

Formulate this problem as a lpp to maximize the profit to the company.
12. Evaluate $\int_{0}^{4}|x-1| d x$.

Section - C

13.If $\tan ^{-1}\left(\frac{x-2}{x-4}\right)+\tan ^{-1}\left(\frac{x+2}{x+4}\right)=\frac{\pi}{4}$, then find the value f x .
14. Show that $\left|\begin{array}{ccc}a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c\end{array}\right|=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$.

Or,
If $\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ a x^{2} & a x & a\end{array}\right|$ by using properties of determinants, find the value of $f(2 x)-f(x)$.
15. Differentiates $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ w.r.t $\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$.

> Or,

If $\mathrm{y}=\frac{\sin ^{-x}}{\sqrt{1-x^{2}}}$ show that $(1-\mathrm{x})^{2} \frac{d^{2} y}{d x^{2}}-3 \mathrm{x} \frac{d y}{d x}-\mathrm{y}=0$.
16. Evaluate $\int \frac{d x}{\sin ^{4} x+\operatorname{co}^{4} x}$
17. Evaluate $\int_{0}^{\pi} \frac{d x}{3+2 \sin x+\cos x}$
Or,
. Evaluate $\int_{-5}^{0} f(x) d x$ where $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}+2|+|\mathrm{x}+5|$.
18 Find the solution of differential equation
$x^{2} d y+y(x+y) d x=0$ if $x=1$ and $y=1$
19. Show that area of parallelogram whose diagonals are given by \vec{a} and \vec{b} is $\frac{\vec{a} \times \vec{b}}{2}$,Also ,find the area of the parallelogram whose diagonals are $2 \vec{\imath}-\vec{\jmath}+\vec{k}$ and $\vec{\imath}+3 \vec{\jmath}-\vec{k}$.
20. \vec{a}, \vec{b} and \vec{c} be non-zero non-coplanar vectors. Prove that $\vec{a}-2 \vec{b}+3 \vec{c}$, $-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $\vec{a}-3 \vec{b}+5 \vec{c}$ are coplanar vector.
21. A clever student used a biased coin so that the head is 3 times as likely to occur as tail . if the coin is tossed twice, find the probability distribution and mean of numbers of tails.

22 An urn contains m white and n black ball . A ball is drawn at random and is put back into the urn along with' k ' additional ball of the same color as that of the ball drawn. A ball is again drawn at random.so that the probability of drawing a white ball does not depend on ' k '.

23 A librarian has to accommodate two different types of books on a shelf. The books are 6 cm and 4 cm think and weight 1 kg and $1 \frac{1}{2} \mathrm{~kg}$ each, respectively. The shelf is 96 cm long and atmost can support a weight of 21 kg . How should the shelf be filled with the books of two types in order to include the greatest number of books? make it as an lpp and solve it graphically. What are the values reflected in the question?

Section-D

24. If $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$, Find $A B$ use this to solve the following system of equations $x-y=3,2 x+3 y+3 z+4 z=17$ and $y+2 z=7$.
25. A jet of enemy country is flying along the curve $x^{2}=4 y$. A solider placed at point $(-1,2)$ want to shoot down the jet f enemy when it is nearest to him. Find the nearest point to the solider. How does this problem help solider in the battle field? justify your answer.
26. A variable plane which remains at a constant distance 3 p from the origin cut then coordinate axes at A, B and C show that the locus of the centroid of $\triangle A B C$ is

$$
x^{-2}+y^{-2}+z^{-2}=p^{-2} .
$$

or,

Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes \vec{r}. $(\vec{\imath}-\vec{\jmath}+2 \vec{k})=5$ and $\vec{r} .(3 \vec{\imath}+\vec{\jmath}+\vec{k})=6$.
27. If $f: R-\{2\} \rightarrow R-\{3\}$ is defined by $f(x)=\frac{3 x+1}{x-2}$ where R is set of real numbers, show that f is invertible and hence find the value of $f{ }^{1}$

Or,
Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$, show that $\mathrm{f}: \mathrm{N} \rightarrow \operatorname{range}(\mathrm{f})$ is invertible. Find the inverse of f.
28. Find the area of region bounded by the curve $y^{2}=4 a x$ and $x^{2}=4 a y$

Or,
Using integration, find the area of triangular region whose side have the equation

$$
y=2 x+1, y=3 x+1 \text { and } x=4
$$

29. solve the differential equation
$\left(\mathrm{x}+2 \mathrm{y}^{2}\right) \frac{d y}{d x}=\mathrm{y}$, given that when $\mathrm{x}=2$ and $\mathrm{y}=1$. if x denotes the percentage of people who are polite and y denotes the percentage of people who are intelligent. Find x , when $\mathrm{y}=2 \%$. A polite person is always liked by all in society. Do you agree justify.
